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Abstract

In many cases we will learn contradictory facts about a situation, yet generally we

can resolve these contradictions. If someone told us that a box was full of cherries

but we open it to find the box is empty, we would not believe it was both full and

empty, rather dismiss the first fact as false. Similarly, belief revision is the study of

resolving contradictions in sets of logical propositions, in particular enabling us to

add new sentences to the set without introducing inconsistencies.

We will study some main developments in this field; firstly how to represent a

system capable of performing belief revision and what properties it should have,

particularly when revising multiple times, or iterated revision. Secondly we shall

investigate a selection of iterated revision operators based on this theory, and how

each compares with our theory and intuitive ideas of how such an operator should

work.
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Chapter 1

Introduction to Belief Revision

Imagine we had a “store of knowledge” that we can add to. Once we receive new

information, we add it into our store. This seems a simple concept, however what

if we are trying to add information that is inconsistent with information we already

knew?

Example 1.1. Say we have the following facts.

1. I got a present in my stocking last night.

2. If I got a present in my stocking, it was delivered by Father Christmas.

3. When Father Christmas delivers presents, he uses flying reindeer to do it.

But were then told:-

4. Flying reindeer don’t exist.

If we believed all of these facts at the same time, we’d have to simultaneously be-

lieve flying reindeer exist and don’t exist. Alternatively to avoid this we could forget

everything—but why would the lack of flying reindeer cause us to re-think whether we

got a present in our stocking last night?

We know something must be wrong, and at least one of the facts must be incorrect

and should be removed, but which? In particular, how can we do this so we get rid

9



CHAPTER 1. INTRODUCTION TO BELIEF REVISION 10

of the contradiction, but keep as much knowledge as possible? Belief revision is the

study of resolving such issues.

In this work we shall analyse formalisms of belief revision into propositional logic,

starting with the very influential Alchourrón, Gärdenfors and Makinson postulates

and their relation to rational consequence. We shall then look at several developments

that address criticisms of the AGM postulates, particularly in reference to revising

multiple times, or iterated revision. Finally we shall present a selection of operators

capable of iterated revision, and examine their properties in reference to the postulate

sets investigated earlier.

1.1 Preliminaries

Before doing anything, we shall define the language we are working in. Throughout

this work, we shall assume a non-empty, finite propositional language L, with the

propositional variables being p, q, r, . . ., and SL representing the set of all sentences

of L. Since the language is finite, we can define the set of atoms AtL, as the set of

sentences of the form
∧

p∈L

±p where ± p = p or ¬p

By the disjunctive normal form theorem [9], any sentence θ using any of the standard

connectives ¬,∨,∧,→ is logically equivalent to a sentence of the form

θ ≡
∨

α∈Sθ

α where Sθ ⊆ AtL

Sθ can be thought of the set of all possible valuations or worlds that satisfy θ, or

situations when θ will be true. As proved in [9], we have the following standard

properties of Sθ, which we shall use repeatedly.

Theorem 1.2. For any θ, φ ∈ SL

1. θ unsatisfiable ⇐⇒ Sθ = ∅

2. θ |= φ ⇐⇒ Sθ ⊆ Sφ
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3. Sθ ∩ Sφ = Sθ∧φ

4. Sθ ∪ Sφ = Sθ∨φ

5. S¬θ = AtL − Sθ

1.1.1 Rational Consequence

Along with the classical monotone consequence relation |=, we introduce a class of

non-monotonic rational consequence relations, |∼~k, where we interpret θ |∼~k φ to

mean “if θ then normally φ”.

Definition 1.3. Define a k-vector as ~k = 〈k1, k2, k3, . . . , km〉, such that

• ki ⊆ AtL, ∀i = 1 . . .m

• ki ∩ kj 6= ∅ ⇐⇒ i = j

For each such ~k, we define a binary relation on sentences as follows

Definition 1.4. |∼~k is a rational consequence relation, |∼~k ⊆ SL× SL iff

θ |∼~k φ ⇐⇒
ki ∩ Sθ = ∅, ∀i = 1, . . . , m or

∃i[ki ∩ Sθ 6= ∅], and for the least such i, ki ∩ Sθ ⊆ Sφ.

As a shorthand, also define

(θ)
~k :=







minimum i such that ki ∩ Sθ 6= ∅ if ∃i, ki ∩ Sθ 6= ∅,

∞ otherwise.

Definition 1.5. |∼~k is a consistency-preserving rational consequence relation, if ~k

also satisfies
m
⋃

i=1

ki = AtL

Note that since
⋃m

i=1 ki = AtL, ki ∩ Sθ = ∅, ∀i ⇒ Sθ = ∅ ⇒ θ is inconsistent. So if

only considering θ such that θ is consistent, the definition of |∼~k shortens to

θ |∼~k φ ⇐⇒ ki ∩ Sθ ⊆ Sφ, where i = (θ)
~k



CHAPTER 1. INTRODUCTION TO BELIEF REVISION 12

N.B. When we consider rational consequence relations, we shall only need the latter,

consistency-preserving rational consequence relations, and unless specifically men-

tioned, assume that every ~k is such that
⋃m

i=1 ki = AtL.

Although seemingly unrelated, the above definition will soon have a very integral

part in our theory revision.

1.2 Knowledge Representation, Revision and Ex-

pansion

Before we can reason about such a “store of knowledge” as mentioned at the beginning

of this chapter, we need to decide on a representation of such a store. Assuming we

can translate the items into a propositional logic language, we shall initially use the

following.

Definition 1.6. A Knowledge base K is a set of sentences of L that is deductively

closed, i.e.

K ⊆ SL, K = Cn(K)

Where:-

Cn(K) = {θ : K |= θ}

A knowledge base K is unsatisfiable if,

K |= θ, or equivalently, θ ∈ SL ⇐⇒ K = SL

(otherwise K is satisfiable).

Intuitively, a knowledge base is the set of things we would believe at any one

moment. It is deductively closed since if we believed p and p→ q, then it seems

reasonable to expect us to believe q also, etc. Note that p 6∈ K does not imply ¬p ∈

K—we don’t have to believe p or it’s negation, we can be indifferent on the matter

also. However, if we believed both p and ¬p, then K = SL and K is unsatisfiable.

However, even at this stage knowledge bases are not the only way to model our

knowledge.
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Definition 1.7. In a finite language situation, an equivalent way of representing

current knowledge is a belief sentence. Given a knowledge base K, we can generate

an equivalent belief sentence ψ, by

ψ :=
∨ ⋂

θ∈K

Sθ

in which case, it is easy to see that K = Cn(ψ) and θ ∈ K ⇐⇒ ψ |= θ.

Belief sentences are easier to handle in some ways since ψ is a single sentence,

whereas K is always a non-finite set (since p |= p ∧ p |= p ∧ p ∧ p |= . . .). However,

it is easy to see that for each K there are many equivalent sentences ψ, so a belief

sentence causes additional complications in checking that equivalent sentences are

treated in the same way. Finally we could use a belief base, which is purely the set of

sentences we have been told, like in example (1.1). However, this will not be relevant

to our discussions.

If we weren’t worried about keeping K satisfiable, then one obvious way of revising

K is by just slinging our new knowledge in. We call this expansion, defined by

K + θ = Cn(K ∪ {θ})

which clearly generates another knowledge base, but there is no guarantee that it is

satisfiable.

Example 1.8. K = Cn(p), K + ¬p = Cn(p,¬p) = SL

At this stage the knowledge base—what we believe—contains every sentence pos-

sible, which clearly isn’t desirable behaviour. It’s not reasonable to expect to believe

something is both true and false simultaneously.

What we want is a revision operator, K ∗ θ, that is guaranteed to produce a

satisfiable knowledge base, but naturally this is a lot more complex.
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1.3 AGM Postulates

Alchourrón, Gärdenfors and Makinson suggest a series of postulates, or desirable

properties, for such an operator [9]. These are, for a knowledge base K and a satisfi-

able sentence θ,

(*0) K ∗ θ is satisfiable

(*1) K ∗ θ = Cn(K ∗ θ)

(*2) θ ∈ K ∗ θ

(*3) ¬θ 6∈ K ⇒ K ∗ θ = K + θ

(*4) θ ≡ φ⇒ K ∗ θ = K ∗ φ

(*5) For θ ∧ φ satisfiable, ¬φ 6∈ K ∗ θ ⇒ (K ∗ θ) + φ = K ∗ (θ ∧ φ)

(*0), (*1) specify that the result is another satisfiable knowledge base. (*2) states

that θ will always be in our new knowledge base, i.e. the agent always believes what it

is told. Of course there are plenty of examples of when we could consider this counter-

intuitive—I certainly don’t believe all that I’m told—however in the situation that the

new sentences are observations, for example, then it seems reasonable. (*3) states that

we should do the minimum possible; if there is no reason not to believe something,

then we should just add it to what we already know without removing anything from

the knowledge base. (*4) states that when given equivalent information, we should

end up with the same knowledge base. For example, whether we were told “Henry is

in the garden” or “Henry est dans le jardin” shouldn’t make any difference to what

we believed afterwards1.

An equivalent way of expressing (*5) is, for θ ∧ φ satisfiable, ¬φ 6∈ K ∗ θ,

∀ψ, (K ∗ θ), φ |= ψ ⇐⇒ K ∗ (θ ∧ φ) |= ψ

i.e. if φ is a “concrete fact”, revising by θ should be the same as revising by θ∧φ—note

that in the presence of (*2), the right hand condition is equivalent toK∗(θ∧φ), φ |= ψ

1presuming we knew French, of course!
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1.3.1 Representations of AGM Revision Operators

For any suggested revision operator, we would currently have to prove each of (*0)–

(*5) for our operator. However we already have a representation result from [9].

Theorem 1.9. ∗ is an AGM-compliant revision operator, i.e. it satisfies (*0)–(*5),

iff there exists a consistency preserving rational consequence relation |∼~k such that

K = {φ : |∼~k φ} or if k1 6= ∅, K = Cn(
∨

k1)

K ∗ θ = {φ : θ |∼~k φ}

Thus not only giving us a framework within which we can base revision operators

upon, but also avoids proving that the operator complies with each of (*0)–(*5).

Instead, we can just show that an operator is characterised by a ~k.

Katsuno and Mendelzon suggest an alternative equivalence, based instead around

faithful orderings. However, the revision operators that faithful orderings describe

use belief sentences, as defined in (1.7). Since we have a finite language L, we already

know that belief sentences and knowledge bases are equivalent notions, we will now

show that the revision operators they define are exactly equivalent to our ∗ operators.

Definition 1.10. A total pre-ordering is a relation ≤ψ such that:-

• ≤ψ is transitive

• ≤ψ is reflexive

• ≤ψ is total, i.e. ∀α, β ∈ AtL[β ≤ψ α or α ≤ψ β]

As ≤ψ is a total ordering, we can define =ψ, <ψ as follows

• α =ψ β ⇐⇒ α ≤ψ β and β ≤ψ α

• α <ψ β ⇐⇒ α ≤ψ β and β �ψ α ⇐⇒ β �ψ α

(since ≤ψ is total, β �ψ α =⇒ α ≤ψ β)

Lemma 1.11. <ψ is transitive and irreflexive
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Proof. Transitive: Given α <ψ β, β <ψ γ, assume γ ≤ψ α (i.e. α 6<ψ γ).

α <ψ β ⇒ α ≤ψ β, with γ ≤ψ α ⇒ γ ≤ψ β ⇒ β 6<ψ γ, contradiction.

Irreflexive: Assume α <ψ α, then α ≤ψ α and α �ψ α, contradiction.

Definition 1.12. A faithful assignment is a mapping from a sentence ψ to a total

pre-order ≤ψ such that ∀α, β ∈ AtL:-

α |= ψ, β 6 |= ψ ⇒ α <ψ β

α |= ψ, β |= ψ ⇒ α =ψ β

ψ ≡ θ ⇒ ≤ψ=≤θ

i.e. given ψ, a faithful assignment will order all possible atoms by the “plausibility”

of ψ. The atoms in which ψ is true are classified as the smallest by ≤ψ.

Finally, we give their formulation for all AGM revision operators.

Theorem 1.13. A revision operator ◦ : SL → SL using belief sentences obeys the

AGM postulates, i.e. there exists an AGM revision operator ∗ such that

Cn(ψ) ∗ θ = Cn(ψ ◦ θ)

iff there exists a faithful assignment mapping the belief sentence ψ to a total pre-order

≤ψ such that

S(ψ◦θ) = {α ∈ Sθ : @β ∈ Sθ[β <ψ α]}

Proof. We shall prove this by showing every operator of this form is equivalent to

our already defined set of ∗ operators based on ~k.

Lemma 1.14. Given a faithful assignment from a belief sentence ψ to a total pre-

order ≤ψ, we can generate a ~k, such that

α ≤ψ β ⇐⇒ α ∈ ki and β ∈ kj, where i ≤ j (1.14i)

K = Cn(ψ) = Cn(
∨

k1) (1.14ii)
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Proof. Choose a sequence of αi ∈ AtL such that,

α1 <ψ α2 <ψ . . . <ψ αn

and it cannot be expanded by any further αi’s. This is possible since AtL is finite,

there is a finite number of αi’s, and as <ψ is irreflexive and transitive, no αi can be

repeated. This gives an upper bound on the length of the sequence. Since AtL is

non-empty, we can at least have a sequence of length 1.

Define ~k by

ki := {β ∈ W : αi =ψ β}

Clearly (1.14i) will hold, so long as every α ∈ AtL is a member of some ki. What if

one had been missed out?

Claim.
⋃m
i=1 ki = AtL. Suppose not, i.e. ∃β

[

∀αi[αi 6=ψ β]
]

Since ≤ψ is total, we have

∀αi[αi ≤ψ β or β ≤ψ αi]

However, by transitivity, only one of the following will hold:-

• ∀αi, αi <ψ β

• ∀αi, β <ψ αi

• ∃j such that αj <ψ β <ψ αj+1

In all cases, we could then add β into the sequence. But that sequence was maximal—

contradiction.

Since ≤ψ is a faithful assignment, we know that

α ∈ {β ∈ AtL : β is minimal according to ≤ψ} ⇐⇒ α |= ψ ⇐⇒ α ∈ Sψ

Which, by the above, is equivalent to

α ∈ k1 ⇐⇒ α ∈ Sψ

So k1 = Sψ, therefore Cn(
∨

k1) = Cn(
∨

Sψ) = Cn(ψ), and (1.14ii) holds.
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Theorem 1.15. Any K&M revision operator ◦ as in (1.13) is exactly equivalent to

a revision operator ∗ defined with |∼~k, i.e. for any satisfiable θ,

Cn(ψ ◦ θ) = Cn(ψ) ∗ θ

Proof. By Lemma (1.14), we can generate a ~k that satisfies the conditions for being

a revision operator (i.e. K = Cn(ψ) = Cn(k1)). We show that this ~k is what we

want.

Cn(ψ) ∗ θ = {φ : θ |∼~k φ}

= {φ : least i st ki ∩ Sθ 6= ∅, ki ∩ Sθ ⊆ Sφ}

since θ is satisfiable, we know ∃i, ki ∩ Sθ 6= ∅.

= {φ : {α ∈ Sθ : α ∈ ki and @β ∈ Sθ[β ∈ kj and j < i]} ⊆ Sφ}

= {φ : {α ∈ Sθ : @β ∈ Sθ[β <ψ α]} ⊆ Sφ}

= {φ : Sψ◦θ ⊆ Sφ} = {φ : ψ ◦ θ |= φ} = Cn(ψ ◦ θ)

A simple corollary of this is that any K&M revision operator ◦ satisfies (*0)–(*5).

Lemma 1.16. Given a ~k for a knowledge base K (i.e. such that K = {φ : |∼~k φ}),

we can generate a faithful assignment from any sentence ψ such that K = Cn(ψ) to

≤ψ

Proof. Define ≤ψ by, ∀α, β ∈ AtL,

α ≤ψ β ⇐⇒ α ∈ ki and β ∈ kj, where i ≤ j

Since K = Cn(
∨

k1), it is easy to see that the first two conditions of being a faithful

assignment hold. Lastly, since ψ ≡ θ ⇒ Cn(ψ) = Cn(θ), then ≤ψ = ≤θ, by definition.

And in an identical fashion to Theorem (1.15), we can show that the constructed

≤ψ will give identical results to a revision operator based on ~k, thus we can freely go

back and forth between the two definitions.
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1.4 Failures of AGM

The aim of the AGM postulates is to capture a set of operators that satisfies our intu-

itive thinking as to how a revision operator should work, and weed out non-intuitive

revision operators. However, the next 2 examples show non-intuitive behaviour that

is allowed by the AGM postulates.

Example 1.17. Consider the following language L, which contains the propositional

variables

c — I will cycle to work

w — I will walk to work

r — It is raining

and suppose we had 2 agents with the initial knowledge of

K1 = Cn({r,¬r→c}) and K2 = Cn({r,¬r→w})

respectively. Since r |= ¬r→ c and r |= ¬r→w, it is easy to see that K1 = K2 =

Cn({r})

However what happens if we try to revise both by ¬r? We’d expect Agent 1 to

decide to cycle to work, agent 2 to walk there. However, (*4) dictates that the resulting

knowledge base or belief sentence should be the same, since K1 and K2 are the same.

So AGM-compliant postulates seem to be forced to ignore such “hidden knowl-

edge”. Also, the only time that AGM rules mention applying multiple revisions is if

we combine (*3) and (*5) to give

θ ∧ φ satisfiable, ¬θ 6∈ K,¬φ 6∈ K ∗ θ ⇒ (K ∗ θ) ∗ φ = K ∗ (θ ∧ φ)

which, whilst it seems reasonable, only applies in a very specific case. As a result of

this, there’s very little we can’t do when considering iterated revisions. Consider the

following example.
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Example 1.18. (adapted from [3]) Consider the following language L, about this new

animal we have just seen

w — the animal has wings

f — the animal can fly

Suppose we initially believed K = Cn(¬w ∧ ¬f). Then, if it suddenly stretched

out it’s wings, the following is AGM compliant reasoning

K ∗ w = Cn(w ∧ f) possible if ~k = 〈{¬w ∧ ¬f}, {¬w ∧ f}, {w ∧ f}, {w ∧ ¬f}〉.

So not only would we now believe it had wings, but also that it can fly. But what if

we’d seen it flying first? Using the above, we get K ∗ f = Cn(¬w ∧ f), however it is

perfectly AGM compliant to then do

K ∗ f = Cn(¬w ∧ f) using same ~k as above

Cn(¬w ∧ f) ∗ w = Cn(w) if after revising by f we use a new ~k, where

~k = 〈{¬w ∧ f}, {¬w ∧ ¬f, w ∧ f, w ∧ ¬f}〉.

Therefore (K ∗ f) ∗ w = Cn(w).

So, even though we saw it flying, once we see it has wings we don’t conclude it can

fly anymore. This doesn’t seem like “reasonable” behaviour—we’d expect a result that

stated the animal had wings and could fly.



Chapter 2

Beyond AGM: Further Postulates

and Formulations

The previous chapter finished with a selection of examples where AGM compliant

operators were producing non-intuitive results. In example (1.17), the problem isn’t

necessarily related to (*4), but rather that we have destroyed the information that

agent 1 prefers cycling, and agent 2 prefers walking. As the example shows, this

information cannot be stored in the knowledge base, however it can within the revision

operators’ ~k as “conditional knowledge”. For example, if we revised K1 and K2, using

~k1 = 〈{r ∧ ¬p ∧ ¬q}, {¬r ∧ p ∧ ¬q}, {¬r ∧ ¬p ∧ q}, . . . 〉

~k2 = 〈{r ∧ ¬p ∧ ¬q}, {¬r ∧ ¬p ∧ q}, {¬r ∧ p ∧ ¬q}, . . . 〉

as revision operators respectively, then we would get the intended result. Thus we

need to consider the revision operators’ ~k as part of our current knowledge, not purely

as a device to determine the revision operator.

Example (1.18) works since the AGM rules explicitly avoid mentioning multiple,

or iterated, revisions. As a result we can get away with anything, since there are

no restrictions to the revision operators we can use, so long as they match with

our current knowledge base. Since we now know that there is conditional knowledge

within the ~k itself, we need further postulates to restrict the choice of ~k when revising

iteratively, to preserve this knowledge.

21
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2.1 The Darwiche and Pearl Approach

Darwiche and Pearl, in solution to the above problems, suggest replacing knowledge

bases with epistemic states [3]. In their paper they define an epistemic state pur-

posefully vague manner, however there are many papers which have re-expressed the

definition in a clearer manner, such as [7]. We will take an epistemic state as any

structure such that we have two associated functions:-

• A unary function [ ] that takes an epistemic state and returns a knowledge

base—a “current-belief” function.

• A binary function that takes an epistemic state and a sentence, and returns a

new epistemic state—i.e. a revision operator.

To give a more concrete example of this, we’ll express a collection of epistemic

states based on our ~k notation.

Definition 2.1. Define a ~k-based epistemic state as a k-vector as in (1.3), along

with two associated functions,

• A current-belief function [ ] defined by [~k] = {φ : |∼~k φ}

• A revision operator � such that ~k � θ = ~k′

So to complete this definition, we will need to give a revision operator �. Several

different suggestions for revision operators for ~k-based epistemic states are given in

the next chapter, but for now we will focus on on properties such an operator should

have.

Before we used K, (or {φ : |∼~k φ}) as our “current knowledge” and the ~k to

define the revision operator. Now we are using all of the ~k information as part of

our “current knowledge”. The revision operator is now a function applied to ~k’s, as

opposed to a function defined by them.

Since the notation we have used is very similar to our representation of AGM-

compliant operators, we can define AGM compliant operators within ~k-based epis-

temic states by the following.
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Lemma 2.2. Given a ~k-based epistemic state such that � obeys

[~k � θ] = {φ : θ |∼~k φ}

and a fixed K = [~k], then K ∗ θ = [~k � θ] is a valid AGM operator

Proof. Using the same ~k, all of the conditions in (1.9) follow by definition.

Given the above, we can give a set of postulates implying the AGM postulates

for ~k-based epistemic states as follows:-

(�0) [~k � θ] is satisfiable

(�1) [~k � θ] = Cn([~k � θ])

(�2) θ ∈ [~k � θ]

(�3) ¬θ 6∈ [~k] ⇒ [~k � θ] = [~k] + θ

(�4) θ ≡ φ⇒ [~k � θ] = [~k � φ]

(�5) For θ ∧ φ satisfiable, ¬φ 6∈ [~k � θ] ⇒ [~k � θ] + φ = [~k � (θ ∧ φ)]

So an important point to note is that if our operator � complies with AGM

postulates, then in the single-revision case [~k � θ], the result is the same regardless

how we define our revision operator.

Also in [3], they suggest 4 extra postulates to further restrict the choice of revision

operators.

(C1) φ |= θ =⇒ [(~k � θ) � φ] = [~k � φ]

(C2) φ |= ¬θ =⇒ [(~k � θ) � φ] = [~k � φ]

(C3) φ ∈ [~k � θ] =⇒ φ ∈ [(~k � φ) � θ]

(C4) ¬φ 6∈ [~k � θ] =⇒ ¬φ 6∈ [(~k � φ) � θ]
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(C1) and (C2) are very similar in notation, but the interpretation is quite different.

(C1) states that if φ implies θ anyway, then revising by θ first wouldn’t have an

effect, since φ implies it anyway. For example, if you were told “the pen is on the

table” and then “the pen and pencil are on the table”, the first statement is rather

redundant—we know that from the second anyway. (C2) States that if revising by θ

then φ is going to cause a contradiction, then the most recent information completely

overrides the older information. This can be thought of as an extension of (�2), that

revision always succeeds. For example, if someone told us “Bill Oddie is my father”,

then “Actually, my father is Tom Jones”, since we believe the second sentence by

(�2), there’s no way we can believe the first also—we might as well not been told it.

(C3) specifies we can’t do what we did in example (1.18), if we revise by θ and can

conclude φ (as we do in the first case of (1.18)), then we still can if we knew φ before

θ (what we expect to happen in the second half). For example, if we conclude that

someone is Welsh after hearing their Welsh accent, we should certainly think they’re

Welsh if they told us they were before we decided they had a Welsh accent. (C4)

states that if after θ we didn’t refute φ, there’s no reason to if we did originally know

φ. For example, concluding that someone hates model railways because their name is

Steve doesn’t seem reasonable. But if someone told us that they loved model railways

and that their name was Steve, then it seems an even more bizarre conclusion.

Do the AGM postulates already imply any of these, though? Example (1.18)

already gives us an AGM operator that doesn’t obey (C3), but we can also give

examples of AGM-compliant operators that also break (C1),(C2) and (C4).

Example 2.3. AGM operator breaking (C1) and (C2): Let

~k = 〈{¬p ∧ q}, {p ∧ ¬q}, {p ∧ q,¬p ∧ ¬q}〉

~k � p ∨ q = ~k � ¬p = ~k′ = 〈{¬p ∧ q}, {p ∧ ¬q, p ∧ q,¬p ∧ ¬q}〉

and since [~k′] = [~k � p ∨ q] = {¬p ∧ q} = {φ : p ∨ q |∼~k φ}, this is AGM compliant.

We know p |= p ∨ q, however,

[~k � p] = {φ : p |∼~k φ} = Cn(
∨

{p ∧ ¬q}) = Cn(p ∧ ¬q)

[(~k � p ∨ q) � p] = [~k′ � p] = {φ : p |∼~k′ φ} = Cn(
∨

{p ∧ ¬q, p ∧ q}) = Cn(p)
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which breaks (C1).

Equally p |= ¬(¬p) and [~k′] = {φ : ¬p |∼~k φ}, however,

[~k � p] = {φ : p |∼~k φ} = Cn(
∨

{p ∧ ¬q}) = Cn(p ∧ ¬q)

[(~k � ¬p) � p] = [~k′ � p] = {φ : p |∼~k′ φ} = Cn(
∨

{p ∧ ¬q, p ∧ q}) = Cn(p)

which breaks (C2).

AGM operator breaking (C4): Let

~k = 〈{¬p ∧ q}, {p ∧ ¬q, p ∧ q}, {¬p ∧ ¬q}〉

~k � q = ~k′ = 〈{¬p ∧ q}, {p ∧ ¬q}, {p ∧ q,¬p ∧ ¬q}〉

and since [~k′] = [~k� q] = {¬p∧ q} = {φ : q |∼~k φ}, this is AGM compliant. However,

[~k � p] = Cn(
∨

{p ∧ ¬q, p ∧ q}) ⇒ ¬q 6∈ [~k � p]

[(~k � q) � p] = [~k′ � p] = Cn(
∨

{p ∧ ¬q}) ⇒ ¬q ∈ [(~k � q) � p]

So since we have an example of AGM-compliant operators that break each rule,

(C1)–(C4) can’t be derived from AGM postulates. However, they are not completely

contradictory either, in the next chapter we shall produce some examples of operators

that satisfy all these postulates.

2.2 The Lehmann Approach

An alternative framework is suggested by Lehmann in [8]. Although it was envisaged

before Darwiche and Pearl’s epistemic states, it can also be thought of as an epistemic

state. However, the postulates Lehmann provides have different properties to that of

Darwiche and Pearl.

Definition 2.4. Let σ, τ , . . . represent finite sequences of satisfiable sentences joined

by ‘·’. So, for example

σ = θ · φ · ψ σ · µ = θ · φ · ψ · µ

and define Λ as the empty sequence
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Definition 2.5. Let a sequence-based epistemic state be a finite sequence σ, where

the revision operator is just ‘·’, i.e. revision merely causes us to add items to the

sequence, and [σ] be the knowledge base resulting from revising by all the sentences

in the sequence.

Note that since we have defined our sequences as an epistemic state, we can

translate the rules from the previous section purely by interchanging symbols. We

will also take 2 sequences to be equivalent if

σ1 ≡ σ2 ⇐⇒ [σ1 · τ ] = [σ2 · τ ], ∀τ

i.e. if the result of revising the 2 sequences is the same, now and after any additional

revisions.

Lehmann forms a set of postulates similar to the AGM postulates. For finite

sequences σ, τ and satisfiable sentences θ, φ

(I0) [σ] is satisfiable

(I1) [σ] = Cn([σ])

(I2) θ ∈ [σ · θ]

(I3) φ ∈ [σ · θ] =⇒ θ→φ ∈ [σ]

(I4) θ ∈ [σ] =⇒ [σ · τ ] = [σ · θ · τ ]

(I5) φ |= θ =⇒ [σ · θ · φ · τ ] = [σ · φ · τ ]

(I6) ¬φ 6∈ [σ · θ] =⇒ [σ · θ · φ · τ ] = [σ · θ ∧ φ · τ ]

(I7) [σ · ¬θ · θ] ⊆ [σ] + θ

(I0), (I1), (I2), are clearly equivalent to postulates (�0), (�1), (�2) in our new

language and (I5) is a strengthening of (C1). The remaining AGM postulates can be

derived, as shown in the following result due to Lehmann [8].

Theorem 2.6. Given a revision operator [ ] on sequences that satisfies (I0)–(I7),
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• θ ≡ φ =⇒ [σ · θ] = [σ · φ] — i.e (�4)

Proof.

θ |= φ⇒ φ ∈ [σ · θ] by (I2),(I1) ⇒ [σ · θ · τ ] = [σ · θ · φ · τ ] by (I4)

But φ |= θ ⇒ [σ · θ · φ · τ ] = [σ · φ · τ ] by (I5), so take τ = Λ.

• ¬θ 6∈ [σ] =⇒ [σ · θ] = [σ] + θ — i.e. (�3)

Proof. Given such θ, it’s enough to prove [σ · θ] ⊆ [σ] + θ and [σ · θ] ⊇ [σ] + θ

Claim. [σ · θ] ⊆ [σ] + θ

Take φ such that φ ∈ [σ · θ] By (I3), we get θ→φ ∈ [σ].

Since the result of expansion (i.e. +) is deductively closed, φ ∈ [σ] + θ

Claim. [σ · θ] ⊇ [σ] + θ: Since θ ∈ [σ · θ] by (I2), enough to show [σ · θ] ⊇ [σ].

Given φ ∈ [σ],

¬θ 6∈ [σ] = [σ · φ], by (I4). Thus, by (I6), [σ · φ · θ] = [σ · φ ∧ θ]

By (I2), φ ∧ θ ∈ [σ · φ ∧ θ] =⇒ φ ∈ [σ · φ · θ]

But by (I4), [σ · φ · θ] = [σ · θ]. Therefore φ ∈ [σ · θ]

Lehmann also gives the following representation theorem for such revision opera-

tors, which we shall not prove.

Theorem 2.7. Any Lehmann operator [ ] on sequences satisfies (I0)–(I7) iff we have

a ~k such that

[σ] = Cn(
∨

Leh(σ)1)

where Leh() maps finite sequences into 2At
L

× N, and is defined by

Leh(Λ) = (k1, 1)

Leh(σ · θ) =







(Leh(σ)1 ∩ Sθ, Leh(σ)2) if Leh(σ)1 ∩ Sθ 6= ∅

((
⋃n
i=1 ki) ∩ Sθ, n) otherwise

Where n = max{Leh(σ)2 + 1, (θ)
~k}

To indicate that we are using a specific ~k, we can write [ ]
~k.
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Intuitively, the Leh() function finds the largest subset of k1 that satisfies all sen-

tences so far. However if at some point in the recursion this becomes the emptyset

we start again, considering a large enough ki to resolve this.

Using this theorem, we can also prove that the Lehmann Postulates imply (C3)

and (C4).

Theorem 2.8. Any Lehmann operator satisfying (I0)–(I7) also satisfies

φ ∈ [σ · θ] ⇒ φ ∈ [σ · φ · θ] — i.e. (C3)

¬φ 6∈ [σ · θ] ⇒ ¬φ 6∈ [σ · φ · θ] — i.e. (C4)

Proof of (C3). Any such operator [ ] will be equivalent to the form in (2.7). Assume

φ ∈ [σ · θ] = Cn(
∨

Leh(σ · θ)1).

Assume Sθ ∩ Leh(σ)1 6= ∅, so Sφ ⊇ Leh(σ · θ)1. In this case,

Sφ ⊇ Leh(σ · θ)1 = Leh(σ)1 ∩ Sθ

= Leh(σ)1 ∩ Sφ ∩ Sθ

= Leh(σ · φ)1 ∩ Sθ since Sφ ⊇ Sθ ∩ Leh(σ)1 6= ∅

⇒ Sφ ∩ Leh(σ)1 6= ∅

= Leh(σ · φ · θ)1

On the other hand, assume Sθ ∩Leh(σ)1 = ∅ ⇒ Sφ ⊇ (
⋃n
i=1 ki)∩Sθ, n = Leh(σ · θ)2.

If Sφ ∩ Leh(σ)1 = ∅, Leh(σ · φ)1 = (
⋃m

i=1 ki) ∩ Sφ, where m = Leh(σ · φ)2. Then

either Leh(σ · φ · θ)1 = (
⋃m
i=1 ki) ∩ Sφ ∩ Sθ ⊆ Sφ and done, or

(

m
⋃

i=1

ki) ∩ Sφ ∩ Sθ = ∅ and Leh(σ · φ · θ)1 = (

max{m+1,n}
⋃

i=1

ki) ∩ Sθ

However if m ≥ n,

Leh(σ · φ)1 = (
⋃m
i=1 ki) ∩ Sφ

⊇ (
⋃n
i=1 ki) ∩ Sφ

⊇ (
⋃n

i=1 ki) ∩ Sθ since Sφ ⊇ (
⋃n

i=1 ki) ∩ Sθ

but (
⋃m
i=1 ki) ∩ Sφ ∩ Sθ = ∅, contradiction. So Leh(σ · φ · θ)1 = (

⋃n
i=1 ki) ∩ Sθ ⊆ Sφ.

Otherwise, if Sφ ∩ Leh(σ)1 6= ∅, then Sθ ∩ Sφ ∩ Leh(σ)1 = Sθ ∩ Leh(σ · φ)1 = ∅.

and Leh(σ)2 = Leh(σ · φ)2, so Leh(σ · θ) = Leh(σ · φ · θ).
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Proof of (C4). Identical, but instead of checking that Sφ ⊇ Leh(σ ·φ · θ)1, check that

∃α ∈ Sφ, α ∈ Leh(σ · φ · θ)1

Although it initially looks quite different, the Leh() function is identical to rational

consequence in certain situations.

Corollary 2.9. In the case of a single-sentence sequence, any Lehmann operator [ ]
~k

is AGM-compliant, i.e ∗ defined by K ∗θ = [θ]
~k, K = {φ : |∼~k φ} complies with AGM

postulates

Proof. Consider Leh(θ). If k1 ∩ Sθ 6= ∅, then Leh(θ) = (k1 ∩ Sθ, 1). Otherwise,

Leh(θ) = ((

n
⋃

i=1

ki) ∩ Sθ, n)), where n = max{2, (θ)
~k} = (θ)

~k, since (θ)
~k > 1

=⇒ Leh(θ) = ((

(θ)
~k

⋃

i=1

ki) ∩ Sθ, n))

In both cases, Leh(θ)1 = ki ∩ Sθ, for least i such that ki ∩ Sθ 6= ∅. So

K ∗ θ = [θ]
~k = Cn(

∨

Leh(θ)1)

= Cn(
∨

ki ∩ Sθ) for least i such that ki ∩ Sθ 6= ∅

= {φ : θ |∼~k φ}

A simple observation is that as the number of revisions in σ grows, so will the

size of n. Because of this, any Lehmann operator will tend toward trivial revision,

defined by

Leh(σ · θ)1 =







Leh(σ)1 ∩ Sθ if Leh(σ)1 ∩ Sθ 6= ∅

AtL ∩ Sθ = Sθ otherwise

so when contradicting information is found in a sequence, all previous information

is discarded. Whilst this seems very undesirable, it’s worth noting we only reach

this point after receiving enough inconsistent sentences, for example the sequence

p · ¬p · . . . · p · ¬p. In this case, trivial revision (i.e. purely considering the latest

revision as our current knowledge) seems reasonable.
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2.3 Differences between D. & P. and Lehmann

A lot of the Lehmann Postulates are stronger than Darwiche and Pearl or AGM.

For example, (C1) states that if you revise by a weaker condition then a stronger

condition, the first revision is redundant. However, (I5) also states that the weaker

condition is redundant after further revisions also (due to the τ appended to the end

of the sequence). (I5) in Darwiche and Pearl notation is

φ |= θ =⇒ (~k � θ) � φ ≡ ~k � φ

Note that in (C1), the knowledge bases were equal after the revision. In this instance,

the epistemic states are equivalent, i.e. the knowledge bases will be equal after any

further revisions. Lehmann also comments that (I7) is the strongest version of (C2)

that was consistent with his rules.

Consider the following case of (I5), using q ∧ p |= p

[p ∧ q · ¬q] = [p · p ∧ q · ¬q]

and if ¬q 6∈ [p], we can use (I6) to gain

[p ∧ q · ¬q] = [p · q · ¬q]

So either the right-hand side no longer deduces p after ¬q, or the left-hand side

doesn’t completely discount p ∧ q, and still deduces p. Intuitively, this is unlikely

to be derivable in the Darwiche and Pearl rules, since we cannot use (C1) with an

additional revision after applying the rule (or any of the postulates, in fact). However,

we do have (C2), of which three instances are

[p ∧ q · ¬q] = [¬q], [p · p ∧ q · ¬q] = [p · ¬q], [p · q · ¬q] = [p · ¬q].

So for a Darwiche and Pearl operator, there is clearly going to be a difference

between revising by p ∧ q and revising by p then q. On the other hand, Lehmann

states that there should be no difference at all. Which is more sensible behaviour is

not a clear cut decision, though.
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Example 2.10. Lehmann Behaviour: Suppose we were talking to a group of

people about a party last night.

Jane tells us....

1. “Peter came to the party. . . ” — p

2. “...and Quincy came too” — q, or combining the 2 sentences, p ∧ q

However, the host later tells us

3. “Nah, Quincy wasn’t here.” — ¬q

Whether we view this sequence of sentences as p · q · ¬q or p ∧ q · ¬q is just a matter

of how we are translating the English into propositional logic—it shouldn’t make a

difference as to the end result. Who we believe was at the party shouldn’t change

simply as a result of how we choose to interpret the situation into logic.

Darwiche and Pearl Behaviour: Alternatively, imagine each sentence came

from a different source.

Alfred tells us....

1. “Peter came to the party” — p

Jane tells us....

2. “Quincy came to the party” — q

However, the host later tells us

3. “Nah, Quincy wasn’t here.” — ¬q

In this case, clearly we’d dismiss Jane’s knowledge, presuming she was got far too

drunk and started imagining things, but we’d certainly not discount Peter being there

because of it. However if we applied the same reasoning to the Lehmann case above

(i.e. p∧ q ·¬q), something must be clouding Jane’s judgement, since we know Quincy

wasn’t there. Equally why should we believe her that Peter was there?
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The above example shows two different arguments for each style of revision. Is

it the case we could combine the two, though? Formalising the above, we can prove

that the 2 sets of postulates are incompatible.

Theorem 2.11. There is no revision operator that satisfies the Lehmann equivalent

of (C2),

φ |= ¬θ =⇒ [σ · θ · φ] = [σ · φ]

and (I0)–(I7).

Proof. Assume we have such an operator, [ ]. Since φ ∧ θ |= θ,

[σ · θ · φ ∧ θ · ¬φ] = [σ · φ ∧ θ · ¬φ] by (I5)

But since ¬φ |= ¬(φ ∧ θ)

[σ · φ ∧ θ · ¬φ] = [σ · ¬φ] and [σ · θ · φ ∧ θ · ¬φ] = [σ · θ · ¬φ] by (C2)

So, combining the above, [σ ·θ ·¬φ] = [σ ·¬φ]. Since θ and φ were arbitrary consistent

sentences, any revision sequence [σ · θ] = [θ]

Take φ∧ψ consistent. Then, by (I2), (I1), φ, ψ ∈ [φ∧ψ]. Since [σ · θ] = [θ], using

(I4),

[φ ∧ ψ] = [φ ∧ ψ · φ] = [φ] = [ψ]

But taking θ such that θ ∧ ψ consistent, θ ∧ φ inconsistent,

[θ] = [ψ] = [φ], contradiction.

However, at the beginning of this section we noted that Lehmann provided more

powerful postulates by claiming equality after any additional revisions τ . We can

generate a Darwiche and Pearl compatible version of the Lehmann Postulates by

removing the τ from (I4)–(I6) and replacing (I7) as follows,

(I4’) θ ∈ [σ] =⇒ [σ] = [σ · θ]

(I5’) φ |= θ =⇒ [σ · θ · φ] = [σ · φ]

(I6’) ¬φ 6∈ [σ · θ] =⇒ [σ · θ · φ] = [σ · θ ∧ φ]
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(I7’) φ |= ¬θ =⇒ [σ · θ · φ] = [σ · φ]

These conditions don’t break any of our proofs that a Lehmann operator satis-

fies the AGM postulates. Also, they imply (C1) and (C2), since they are directly

equivalent to (I5’) and (I7’) respectively. In the next chapter, we shall provide an

operator that satisfies these conditions, as well as (C3) and (C4), showing that any

contradictions have been resolved with this modification.

2.4 Update vs. Revision

As noticed by Katsuno & Mendelzon in [6], what is currently considered as revision

should be divided up into 2 cases; revision, where new facts are learnt about a static

world and update, where we are receiving new information about a changing world.

Consider the following example adapted from [6].

Example 2.12. Suppose we have a table with either a book or a magazine on it, but

not both—so L = {b,m}, K = Cn((b ∧ ¬m) ∨ (¬b ∧m)). We send a robot in to put

the book on the table, i.e. we want to revise K by b.

Since ¬b 6∈ K, by (*3), K∗b = K+b = Cn({(b∧¬m)∨(¬b∧m), b}) = Cn(b∧¬m)

— but why would we now conclude the magazine is on the floor?

Alternatively, view the same situation as above, but instead of sending a robot in

to do the dirty work, we walk in ourselves and see the book on the table. It now seems

perfectly reasonable to conclude that the magazine isn’t on the table.

The example above isn’t necessarily disputing (*3). In the latter part, when we

are learning new information about a static world, AGM revision gives a reasonable

result. However when the world is dynamic, i.e. when the robot walks in and changes

it, AGM revision doesn’t give an intuitive answer. Katsuno & Mendelzon suggest

using update operators ∗̇ instead. They give a heavily altered version of the AGM

postulates for update operators which, for satisfiable θ (as usual), are

(U0) K is satisfiable ⇒ K ∗̇ θ is satisfiable



CHAPTER 2. FURTHER POSTULATES AND FORMULATIONS 34

(U1) K ∗̇ θ = Cn(K ∗̇ θ) — same as (*1)

(U2) θ ∈ K ∗̇ θ — same as (*2)

(U3) θ ∈ K ⇒ K ∗̇ θ = K

(U4) θ ≡ φ⇒ K ∗̇ θ = K ∗̇ φ — same as (*4)

(U5) (K ∗̇ θ) + φ ⊆ K ∗̇ (θ ∧ φ)

(U6) φ ∈ K ∗̇ θ, θ ∈ K ∗̇ φ =⇒ K ∗̇ θ = K ∗̇ φ

(U7) For K complete, (K ∗̇ θ) ∩ (K ∗̇ φ) ⊆ K ∗̇ (θ ∨ φ)

(K is complete iff ∀θ ∈ SL, θ ∈ K or ¬θ ∈ K)

(U8) (K1 ∩K2) ∗̇ θ = (K1 ∗̇ θ) ∩ (K2 ∗̇ θ)

Firstly note that (U3) is a weakened version of (*3), so the restriction giving

problems in example (2.12) is eased. However, a direct corollary of (U3) is

K is unsatisfiable ⇒ K ∗̇ θ is unsatisfiable

i.e. once we have an unsatisfiable knowledge base, any update operator cannot resolve

the situation. As a result, (U0) is weakened accordingly. Whilst this sounds very

undesirable, the only time we can get K unsatisfiable is if we start off with an

unsatisfiable K, due to (U0). (U5) is also a weakening of the original AGM postulate.

(U6) states that if we will know one fact if the other happens and vice versa, it doesn’t

matter which we find out about, our end knowledge is the same. For example, if we

see the sun has set, we know it’s night-time. If we know it’s night-time, then the sun

would have set. It doesn’t matter which we find out, since our total knowledge on the

matter would be the same. (U7) can be seen in the following example. I know there’s

going to be a stain on the carpet both if I spill coffee on the carpet and if I spill red

wine on the carpet—which I actually spill doesn’t matter, red wine or coffee, there’s

going to be a stain on the carpet. (U8) implies that each atom in which K is true

is considered separately. Take example (2.12), and consider the following thought

process
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1. We know that the situation in the room is either b ∧ ¬m or ¬b ∧m

2. If the Robot had found that the situation was b ∧ ¬m, there would be no work

for it to be done, so it would return, leaving the room untouched.

3. If the Robot had found that the situation was ¬b ∧m, then it would put the

book on the table, resulting in b ∧m.

4. So after the update, we know that the situation can be either b ∧ ¬m or b ∧m

— i.e. b.

Katsuno & Mendelzon also provide a representation theorem for their update

postulates in [6], as below

Definition 2.13. Let SK =
⋂

θ∈K Sθ, i.e extend our definition of Sθ to knowledge

bases.

Theorem 2.14. Any update operator ∗̇ obeys (U0)–(U8) iff there exists a ~kα for

each α ∈ SK such that

K ∗̇ θ =
⋂

α∈SK

{φ : θ |∼ ~kα
φ} where kα,1 = {α}

Or, using our definition of AGM revision from (1.9),

K ∗̇ θ =
⋂

α∈SK

Cn(α) ∗ θ

The effect of the postulate (U8) is clearly visible in the representation theorem,

when compared to (1.9). An update operation consists of a separate AGM revision

for each possible situation (i.e. atom). For example, in the thought process above we

can show that our revisions at steps 2 and 3 are in fact AGM compliant revisions.

Step 2: b |∼~k b ∧ ¬m where ~k = 〈{b ∧ ¬m}, {¬b ∧m}, {¬b ∧ ¬m, b ∧m}〉

Step 3: b |∼~k b ∧m where ~k = 〈{¬b ∧m}, {b ∧m}, {¬b ∧ ¬m, b ∧ ¬m}〉

By starting with an example with subtly different wording we have ended up with

a completely different semantics, highlighting the importance of clear wording for

such examples. Our new representation seems reasonable, however we are still using
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knowledge bases and have (*4). Problems like example (1.17) are still apparent in

this formulation and like AGM, does not consider iteration. If we used an epistemic

state formulation like our ~k-based epistemic states though, the formulation would

clearly be more complex—simply applying the same theory would result in having

an epistemic state of ~k’s for each possible atom, as opposed to just one.

2.5 Conclusions

Although the AGM postulates have been very influential in shaping further works,

as they stood in the previous chapter they are not the panacea of belief revision. Es-

pecially when considering the case of iterated revision, which is largely unmentioned.

Their rationale for this was one of simplicity—start off with investigating the results

of one revision, and then use these results to better equip yourself when dealing with

the iterated case.

Largely this has worked. All of the postulate-sets presented above use the AGM

postulates as a basis of their reasoning, even if the framework has changed signifi-

cantly since the knowledge bases used in the first chapter. Amongst the postulate

sets presented though, there is no clear winner. For each of the three postulate sets,

we have given an example of when one postulate-set gives a more intuitive result

than another. As in many cases, it seems that coping with the vagueness of natural

language is a tough issue.



Chapter 3

Iterated Revision Operators

We have presented several sets of postulates and representation theorems, but yet

to give concrete examples of revision operators. We shall now look at a selection of

operators capable of considering iterated revision in an intuitive manner, comparing

to postulates from the last chapter.

A recurring theme in the last chapters is that an ordering of knowledge is required

to perform iteration, in our case in the form of a ~k. This makes intuitive sense—when

faced with an example like (1.1), it seems natural to “weigh-up” the facts to decide

which you have a firmer belief in, keep firmly regarded facts and disregard other

contradictory information. We shall classify operators by how they choose to do this

ordering.

3.1 Temporal Operators

Many of the postulates so far, notably (*2), (C1), (C2) and (I2) suggest a heavy

preference to newer information over older information. In particular, we always

incorporate the newest information into our knowledge, regardless of how much it

contradicts information previously in the knowledge base. This idea can be expanded

upon to completely define a revision operation–let new information be more believable

than old.

37
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3.1.1 σ-Liberation

Richard Booth and others suggest a simple operator based on this thinking in [2] and

[1]. Although originally designed for removing sentences from a knowledge base, we

will present it as an operator for iterated revision using the Lehmann formulation.

Definition 3.1. Define σ-Liberation as a revision operator [ ]Γ, where:-

[σ]Γ = Cn(Γ(σ, ∅))

Γ(σ · θ, A) =







Γ(σ,A) if A, θ |= ¬θ i.e. A ∪ {θ} is unsatisfiable,

Γ(σ,A ∪ {θ}) otherwise.

Γ(Λ, A) = A

So our function Γ traverses through the list backwards, adding sentences to the

list A, as long as the new sentence is consistent with the contents of A.

Example 3.2. Suppose we had a sequence of revisions σ = q→r · ¬q · p∧ q · p. Then

[σ]Γ = Cn(Γ(q→r · ¬q · p ∧ q · p, ∅))

= Cn(Γ(q→r · ¬q · p ∧ q, {p})) since p 6 |= ¬p

= Cn(Γ(q→r · ¬q, {p ∧ q, p})) since p, p ∧ q 6 |= ¬(p ∧ q)

= Cn(Γ(q→r, {p ∧ q, p})) since p, p ∧ q,¬q |= q ≡ ¬(¬q)

= Cn(Γ(Λ, {q→r, p ∧ q, p})) since p, p ∧ q, q→r 6 |= ¬(q→r)

= Cn({q→r, p ∧ q, p}) = Cn(p ∧ q ∧ r)

So every sentence is kept, apart from ¬q. Notice that σ-Liberation has no problem

with “hidden knowledge” such as q→r, which we showed to be a problem for AGM

revision operators in example (1.17). This is the rationale for the name, in fact.

Although it is simplest to define this operator on sequence-based epistemic states,

it is not in fact compliant with (I5). Consider the following instance

[p · q ∧ p · ¬q] = [q ∧ p · ¬q]

Γ(p · q ∧ p · ¬q, ∅) = Γ(p · q ∧ p, {¬q}) = Γ(p, {¬q}) = Γ(Λ, {p,¬q}) = {p,¬q}

However,

Γ(q ∧ p · ¬q, ∅) = Γ(q ∧ p, {¬q}) = Γ(Λ, {¬q}) = {¬q}
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From our work in section 2.3, this suggests that is actually more likely to obey

Darwiche and Pearl postulates, which is what we shall prove below.

Lemma 3.3.

A ⊆ Γ(σ,A) (3.3i)

Γ(σ, ∅) 6 |= ¬θ ⇒ Γ(σ, ∅) ∪ {θ} = Γ(σ, θ) (3.3ii)

Proof of (3.3i). Show by induction on |σ| that A ⊆ Γ(σ,A), for any satisfiable A.

(Λ): Γ(Λ, A) = A, so trivial.

(σ)⇒(σ · θ): Consider Γ(σ · θ, A). If A, θ |= ¬θ, then Γ(σ · θ, A) = Γ(σ,A) ⊇ A by I.H.

otherwise A, θ 6 |= ¬θ i.e. A ∪ {θ} is satisfiable, then

Γ(σ · θ, A) = Γ(σ,A ∪ {θ}) ⊇ A ∪ {θ} ⊇ A by I.H.

Proof of (3.3ii). Assume Γ(σ, ∅) 6 |= ¬θ and take σ = φ1 · . . . · φm. Any recursion step

with i > 0 is going to be of the form

Γ(φ1 · . . . · φi, Ai) =







Γ(φ1 · . . . · φi−1, Ai) if Ai, φi |= ¬φi

Γ(φ1 · . . . · φi−1, Ai ∪ {φi}) otherwise

= Γ(φ1 · . . . · φi−1, Ai−1)

where Ai−1 =







Ai if Ai, φi |= ¬φi

Ai ∪ {φi} otherwise

for unique Ai. Note that Γ(σ, ∅) = A0 ⊇ A1 ⊇ . . . ⊇ Am = ∅. Since Γ(σ, ∅) 6 |= ¬θ,

Ai 6 |= ¬θ, ∀Ai.

Claim. ∀Ai, i = 1, . . . , m Ai, φi |= ¬φi ⇐⇒ Ai, θ, φi |= ¬φi

Ai, φi |= ¬φi ⇒ θ, Ai, φi |= ¬φi by monotonicity

Ai, φi 6 |= ¬φi ⇒ Ai−1 = Ai ∪ {φi} by definition

⇒ Ai−1 ∪ {θ} is satisfiable since Ai−1 ⊆ Γ(σ, ∅)

⇒ θ, Ai, φi 6 |= ¬φi
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Consider the same recursion, but starting with Γ(σ, {θ}).

Γ(φ1 · . . . · φi, Ai ∪ {θ}) =







Γ(φ1 · . . . · φi−1, Ai ∪ {θ}) if Ai, θ, φi |= ¬φi

Γ(φ1 · . . . · φi−1, Ai ∪ {θ, φi}) otherwise

But Ai, φi |= ¬φi ⇐⇒ Ai, θ, φi |= ¬φi, so

= Γ(φ1 · . . . · φi−1, Ai−1 ∪ {θ})

Finally, we show by recursion that Γ(φ1 · . . . · φi, Ai ∪ {θ}) = Γ(φ1 · . . . · φi, Ai) ∪ {θ},

i = 0, . . . , m

(i = 0): Γ(Λ, A0) ∪ {θ} = A0 ∪ {θ} = Γ(Λ, A0 ∪ {θ})

(i = i + 1): Γ(φ1 · . . . · φi+1, Ai+1 ∪ {θ}) = Γ(φ1 · . . . · φi, Ai ∪ {θ}) = Γ(φ1 · . . . · φi, Ai) ∪ {θ}

= Γ(φ1 · . . . · φi+1, Ai+1) ∪ {θ}, by inductive hypothesis.

Theorem 3.4. The σ-liberation operator [σ]Γ obeys (I0)–(I3), as well as (I4’)–(I6’)

Proof. (I0): Show by induction on |σ| that Γ(σ,A) is satisfiable, for any satisfiable

A.

(Λ): Γ(Λ, A) = A, so trivial.

(σ)⇒(σ · θ): Γ(σ · θ, A) =







Γ(σ,A)

Γ(σ,A ∪ {θ}) if A, θ 6 |= ¬θ, i.e. A ∪ {θ} is satisfiable.

In both cases, we are done by the inductive hypothesis.

So since A = ∅ is satisfiable, Γ(σ, ∅) is satisfiable, so [σ]Γ is satisfiable.

(I1): Trivial by definition.

(I2): [σ · θ]Γ = Cn(Γ(σ · θ, ∅)) = Cn(Γ(σ, {θ})), since θ 6 |= ¬θ (i.e. θ is satisfiable).

By (3.3i), {θ} ⊆ Γ(σ, {θ}), so θ ∈ Γ(σ · θ, ∅).

(I3): Assume φ ∈ [σ · θ]Γ, so Γ(σ, {θ}) |= φ.

If Γ(σ, ∅) |= ¬θ ⇒ Γ(σ, ∅) |= θ→ φ, ∀φ ⇒ θ→ φ ∈ [σ] Otherwise, Γ(σ, ∅) 6 |=

¬θ ⇒ Cn(Γ(σ, ∅), θ) = Cn(Γ(σ, {θ})) by (3.3ii), so

Γ(σ, {θ}) |= φ⇒ Γ(σ, ∅), θ |= φ⇒ Γ(σ, ∅) |= θ→φ
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(I4’): θ ∈ [σ]Γ ⇒ Γ(σ, ∅) |= θ ⇒ Γ(σ, ∅) 6 |= ¬θ, so by (3.3ii),

Cn(Γ(σ · θ, ∅)) = Cn(Γ(σ, {θ})) = Cn(Γ(σ, ∅) ∪ {θ}) = Cn(Γ(σ, ∅))

i.e. [σ · θ]Γ = [σ]Γ

(I5’): Assume φ |= θ. Then

Γ(σ · θ · φ, ∅) = Γ(σ · θ, φ)

= Γ(σ, {θ, φ})

= Γ(σ, {θ ∧ φ}) as Γ, θ, φ |= ψ ⇐⇒ Γ, θ ∧ φ |= ψ

= Γ(σ, {φ}) = Γ(σ · φ, ∅) as φ ≡ θ ∧ φ

Therefore, [σ · θ · φ]Γ = [σ · φ]Γ

(I6’): Assume ¬φ 6∈ [σ · θ] ⇒ Γ(σ, {θ}) 6 |= ¬φ. Then

Γ(σ · θ · φ, ∅) = Γ(σ · θ, {φ})

if θ, φ |= ¬φ⇒ θ |= ¬φ⇒ Γ(σ, {θ}) |= ¬φ, contradiction

= Γ(σ, {θ, φ})

= Γ(σ, {θ ∧ φ}) = Γ(σ · θ ∧ φ, ∅)

Therefore, [σ · θ · φ]Γ = [σ · θ ∧ φ]Γ

(I7’): Γ(σ ·θ ·φ, ∅) = Γ(σ ·θ, {φ}) = Γ(σ, φ), since φ, θ |= ¬θ. So [σ ·θ ·φ]Γ = [σ ·φ]Γ.

Which, by previous results, is enough to show (�0)–(�5), as well as (C1) and

(C2). The remaining postulates are easy to prove.

Theorem 3.5. The σ-liberation operator [σ]Γ obeys

• φ ∈ [σ · θ]Γ =⇒ φ ∈ [σ · φ · θ]Γ — i.e. (C3)

• ¬φ 6∈ [σ · θ]Γ =⇒ ¬φ 6∈ [σ · φ · θ]Γ — i.e. (C4)

Proof. (C3): Firstly, φ ∈ [σ · θ]Γ ⇒ Γ(σ, {θ}) |= φ⇒ θ 6 |= ¬φ, since θ ∈ Γ(σ, {θ})

Γ(σ · φ, {θ}) = Γ(σ, {φ, θ}) since θ, φ 6 |= ¬φ

By (3.3i), {φ, θ} ⊆ Γ(σ, {φ, θ}) ⇒ φ ∈ Γ(σ, {φ, θ}) ⇒ φ ∈ [σ · φ · θ]Γ

(C4) is identical, since ¬φ 6∈ [σ · θ]Γ ⇒ Γ(σ, {θ}) 6 |= ¬φ⇒ θ 6 |= ¬φ
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So we have a simple revision operator which fully complies with a set of postulates,

why not just stop here? Although it obeys our postulates, it’s still an overly-simple

model of everyday behaviour. For instance, you may see several offers every day to

“Win a free holiday! £1000! A brand new car! No purchase necessary!”, but I just

dismiss all of them—after all, mother always told me you cannot get something for

nothing. Despite the fact that all the adverts are received since I last spoke to my

mother, it is my Mother’s knowledge I rate highest. Also, in the introduction it was

stated that we wanted to get a consistent knowledge base, whilst removing as little

information as possible. Consider the following sequence

σ = p ∧ q · p ∧ r · p ∧ s · p ∧ t · p ∧ u · ¬p · v, ∀v ∈ SL, v 6= p, q, r, s, t, u

the set of sentences would be consistent simply if ¬p was removed. However σ-

Liberation would remove all sentences p ∧ δ and keep ¬p.

3.2 Quantitative Operators

Another method of ranking is to use an explicit value—“I accept θ with degree of

plausibility/trustworthiness n”. This seems like a reasonable notion in cases when, for

example, you have several information sources, you could assign values to each of the

information sources in terms of trustworthiness. An observation you make yourself

would get “trustworthiness” 100, something your mother told you “trustworthiness”

70, something your mate told you down the pub “trustworthiness” 20 and something

written on a promotional flyer just come through your letter box “trustworthiness”

3.

3.2.1 Spohn Conditionalization

This is the motivation for the technique Spohn uses in various papers, for example

[10]. Although he expresses it in terms of ranking functions κ, we shall again use a

~k-based epistemic state.
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Definition 3.6. Given a ~k such that k1 6= ∅, we say that a consistent sentence θ is

believed with degree of firmness µ, iff

• |∼~k θ and µ minimal such that k(µ+1) ∩ S¬θ 6= ∅,

• otherwise 6|∼~k θ and µ minimal such that k(1−µ) ∩ Sθ 6= ∅.

Intuitively, the higher µ is, the stronger we believe in θ. A high positive or

negative µ implies we strongly agree or disagree with θ, respectively—not dissimilar

to a lecturer evaluation questionnaire.

N.B. In both the below definitions, if any ki is undefined, ki = ∅. Most importantly,

ki = ∅, i ≤ 0.

Definition 3.7 (Spohn Conditionalization). Define a collection of revision op-

erators on ~k-based epistemic states, ~k ⊕λ θ = ~k′, using the following algorithm.

1. Split ~k into 2 halves, ~kθ and ~k¬θ, so that α |= θ ∀α ∈ kθ,i, α 6 |= θ ∀α ∈ k¬θ,i

2. k′θ,i := kθ,i+ζ, where ζ = (>)
~kθ −1, or minimal such that kθ,ζ+1 6= ∅—i.e. remove

any initial empty kθ,i’s.

3. k′¬θ,i+λ := k¬θ,i+η, where η = (>)
~k¬θ − 1, or minimal such that k¬θ,η+1 6= ∅—i.e.

make sure there are λ initial empty k¬θ,i’s.

4. k′i := k′¬θ,i ∪ k
′
θ,i—i.e. combine the 2 new halves.

Intuitively, the revision adjusts our vector so that θ has degree of firmness λ,

shifting everything else in a linear fashion around this constraint. For example, figure

(3.1) shows each step of a revision of ~k ⊕3 θ.

For each step, we have a diagram for the relevant ~k. The hatched sections represent

when a ki has atoms that are in Sθ or S¬θ (in steps 2 and 3, the hatched sections are

the non-empty ki’s). After revision, all the “θ atoms” have been moved up, so that

the smallest is now in k′1, whereas all the “¬θ atoms” have been moved down, so that

there is 3 empty ki’s before them.
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1.
¬θ
θ

So ζ = 2, η = 0

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

2.
k′θ,1 k′θ,2 k′θ,3 k′θ,4 k′θ,5 k′θ,6 k′θ,7 k′θ,8

3.
k′¬θ,1 k

′
¬θ,2 k

′
¬θ,3 k

′
¬θ,4 k

′
¬θ,5 k

′
¬θ,6 k

′
¬θ,7 k

′
¬θ,8 k

′
¬θ,9k

′
¬θ,10k

′
¬θ,11k

′
¬θ,12k

′
¬θ,13

4.
¬θ
θ

k′1 k′2 k′3 k′4 k′5 k′6 k′7 k′8 k′9 k′10 k′11 k′12 k′13

Figure 3.1: ~k ⊕3 θ

In the extreme cases, if we revise by a tautology, i.e. ~k ⊕λ >, then in the third

step,
⋃

k⊥,i = ∅. So the net effect of the revision is to remove any initial empty ki’s

in ~k, however if k1 6= ∅, then it has no affect at all.

Alternatively, if we revise by a contradiction, i.e. ~k ⊕λ ⊥, then ~k¬⊥ = ~k and
⋃

k⊥,i = ∅. So the revision ensures that the first λ worlds of ~k′ are empty. So each

has well-defined results, however are not entirely useful—but then, neither is trying

to revise by a contradiction or a tautology.

Postulate Conformance

Firstly, the conditionalization operators are richer than the operators which Darwiche

and Pearl describe in their postulates; we have a whole range of revision operators

to consider, as opposed to just one. Particularly when considering iterated revision,

there is a choice of applying the postulate to a fixed λ, or allowing variation through

the iteration.

Notice that, although the algorithm will result in a valid ~k, it is not guaranteed

that all the ki’s in the result will be non-empty. For example, in figure (3.1), k′11 and

k′12 are empty. Since we are trying to specify the “degree of firmness” for a θ, the

absolute position of worlds is important, not just their relative position.

Theorem 3.8. Fix λ > 0. A Spohn conditionalization operator ⊕λ, meets postulates
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(�0)–(�5)

Proof. (�0)–(�5): Let ~k′ = ~k ⊕λ θ, θ consistent.

[~k ⊕λ θ] = [~k′]

= Cn(
∨

(k¬θ,1+η−λ ∪ kθ,1+ζ)) where η, ζ min. st k¬θ,η+1 6= ∅, kθ,ζ+1 6= ∅

= Cn(
∨

(∅ ∪ kθ,1+ζ)) since 1 + η − λ ≤ η,

= Cn(
∨

(kθ,i)) where i minimal st. kθ,i 6= ∅,

= Cn(
∨

(ki ∩ Sθ)) where i minimal st. ki ∩ Sθ 6= ∅,

= {φ : θ |∼~k φ}

Therefore ⊕λ obeys (�0)–(�5), by lemma (2.2).

Corollary 3.9. For a single-revision case [~k ⊕λ θ], the choice of λ > 0 is irrelevant.

Proof. From the proof of above, [~k ⊕λ θ] = {φ : θ |∼~k φ}, which doesn’t mention

λ.

Note the stipulation that λ > 0. Clearly if λ = 0, then we may end up with θ and

¬θ atoms in k1, therefore θ 6∈ [~k⊕0 θ] and (�2) is broken. However, this condition is

enough get ⊕λ operators that comply with (C1) and (C2).

Theorem 3.10. Fix λ, µ > 0. Spohn conditionalization operators obey (C1) and

(C2)
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Proof of (C1). Consider ~k′ = ~k ⊕λ θ, and use same notation as in definition of ⊕.

[(~k ⊕λ θ) ⊕µ φ] = Cn(
∨

(k′i ∩ Sφ)) where i min st k′i ∩ Sφ 6= ∅

since φ |= θ, Sφ ⊆ Sθ =⇒ Sφ ⊆
⋃m
j=1 k

′
θ,j therefore

= Cn(
∨

(k′θ,i ∩ Sφ)) where i min st k′θ,i ∩ Sφ 6= ∅

since k′θ,i := kθ,i+ζ for fixed ζ, the position of any world relative to another is

unchanged, so

= Cn(
∨

(kθ,j ∩ Sφ)) where j min st kθ,j ∩ Sφ 6= ∅

again, since Sφ ⊆ Sθ, k¬θ,i ∩ Sθ = ∅, ∀i

= Cn(
∨

(kj ∩ Sφ)) where j min st kj ∩ Sφ 6= ∅

= [~k ⊕µ φ]

Proof of (C2). Identical to (C1), but using k¬θ in place of kθ.

However to gain (C3) and (C4) for Spohn conditionalization, we have to require

that in revising by φ, we don’t decrease the degree of firmness in φ. Although possible

by setting λ < (¬φ)
~k, it isn’t very intuitive anyway. If we already believed φ (to a

degree), if someone told us φ again, it shouldn’t result in our belief in φ decreasing,

regardless how untrustworthy they were.

Theorem 3.11. With λ > 0, If λ ≥ (¬φ)
~k, then

φ ∈ [~k ⊕λ θ] ⇒ φ ∈ [(~k ⊕λ φ) ⊕λ θ] — i.e. (C3)

¬φ 6∈ [~k ⊕λ θ] ⇒ ¬φ 6∈ [(~k ⊕λ φ) ⊕λ θ] — i.e. (C4)
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Proof of (C3). Let ~k′ = ~k ⊕λ φ, and use ~kφ, ~k¬φ as in definition of ~k ⊕λ φ.

φ ∈ [~k ⊕λ θ] ⇒ θ |∼~k φ by (3.8)

⇒ ki ∩ Sθ ⊆ Sφ where i min st ki ∩ Sθ 6= ∅

ki ∩ Sθ = kφ,i ∩ Sθ where i min st kφ,i ∩ Sθ 6= ∅

Since k′φ,i := kφ,i+ζ , for fixed ζ, the position of any world relative to another is

unchanged, so

ki ∩ Sθ = k′φ,j ∩ Sθ where j min st k′φ,j ∩ Sθ 6= ∅, j ≤ i

Since λ ≥ (¬φ)
~k, then k′¬φ,p = k¬φ,q, p ≥ q. So k′¬φ,j must be empty, giving

ki ∩ Sθ = (k′¬φ,j ∪ k
′
φ,j) ∩ Sθ where j min st k′φ,j ∩ Sθ 6= ∅, j ≤ i

= k′j ∩ Sθ where j min st k′j ∩ Sθ 6= ∅, j ≤ i

⇒ θ |∼~k′ φ⇒ φ ∈ [(~k ⊕λ φ) ⊕λ θ]

Proof of (C4). Identical, but instead of checking that k′j ∩ Sθ ⊆ Sφ, check that ∃α ∈

Sφ, α ∈ k′j ∩ Sθ

Although the Spohn conditionalization operators satisfy our postulates, intuitively

the quantification doesn’t quite match with everyday behaviour. Whilst phraseology

such as we accept x “to a degree” is part of common language, we would never

specify what that degree was, certainly not numerically. If we were implementing a

system based on Spohn conditionalization though, this would not necessarily be a

problem—we could devise a scheme by experimentation and comparing the results

against what we intuitively expect. However, such a system would not strictly be

reasoning independently.

3.2.2 Relative Conditionalization

A subtly different way of using this notation is to take the revision as “increase our

belief in θ by λ”. This is defined below.

Definition 3.12 (Relative Conditionalization). Define a collection of revision
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operators on ~k-based epistemic states, ~k 	λ θ = ~k′, as follows

k′i = kθ,η+i+λ ∪ k¬θ,η+i

Where η minimal such that kθ,η+λ ∪ k¬θ,η 6= ∅, kθ defined as before.

To show the difference between the operators, figure (3.2) represents a series of

revisions ~k′ = ~k 	λ θ, λ = 1, 2, 3.

¬θ
θ

Original ~k

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

¬θ
θ

λ = 1, η = 1

k′1 k′2 k′3 k′4 k′5 k′6 k′7 k′8 k′9 k′10

¬θ
θ

λ = 2, η = 0

k′1 k′2 k′3 k′4 k′5 k′6 k′7 k′8 k′9 k′10

¬θ
θ

λ = 3, η = −1

k′1 k′2 k′3 k′4 k′5 k′6 k′7 k′8 k′9 k′10 k′11

Figure 3.2: ~k′ = ~k 	λ θ, λ = 1, 2, 3

θ atoms move up by λ up until the last revision, where since there is no k0 to

move to, the net effect is that the ¬θ worlds are moved down by λ− (θ)
~k.

Clearly the relative conditionalization operators are not compliant with any com-

plete set of postulates so far, since in the example in figure (3.2), θ 6∈ [~k 	1 θ], which

breaks postulates (�2), (I2) and (U1), so the class of operators does not fit into any of

our postulate sets, however this doesn’t mean the notion is completely preposterous.

Example 3.13. Consider the following sequence of revisions ~k	1θ	1θ	1θ equivalent

to the revisions in figure (3.2) and where θ means “The moon is made of cheese”.

The first person who tells you that it’s made of cheese, you’re likely to dismiss them

as being stupid, but another person says he heard it being announced this morning
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as well. After these 2 revisions you are now unsure, and go to check the BBC news

website, and again, it says the moon has just been discovered to be made out of cheese.

After this third revision, you now believe the fact.

3.3 Comparative Operators

Another way to rank our belief in sentences is to say “I believe θ as much as I believe

φ”. For example, “I’ll believe that when pigs fly”. Unlike using arbitary ordinals,

this does resemble reasoning we might use on an everyday basis. We could also use

it in the “trustworthiness” example at the beginning of the last section, by believing

everything we hear down the pub as much as some reference sentence φ, for example.

3.3.1 Fermé and Rott’s Revision by Comparison

Fermé and Rott describes a method of reasoning in this manner, where we revise θ

to be “at least as true as ψ” [4]. Again, we shall express his operator in terms of a

~k-based epistemic state.

Definition 3.14 (Revision by Comparison). Given a ~k, define a collection of

revision operators ⊗ψ, ψ ∈ SL, ψ not a tautology, as

~k ⊗ψ θ = ~k′′′,

the result of the revision being that θ has the same degree of firmness as ψ, where:-

a = (¬ψ)
~k

k′i =







ki ∩ Sθ if i < a

ki otherwise

k′′i =







k′i ∪
⋃a

j=1(ki ∩ S¬θ) if i = a

k′i otherwise

k′′′i = k′′b+i−1 where b is minimal such that k′′b 6= ∅

So ~k′ has all the S¬θ “below” ¬ψ removed. ~k′′ re-inserts them at the minimal k′′i such

that ¬ψ holds. Finally, ~k′′′ removes any initial empty ki’s that we may have formed.
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¬θ ∧ ¬ψ
¬θ ∧ ψ

θ ∧ ¬ψ
θ ∧ ψ

k1 k2 k3 k4 k5 k6 k7

Note a = (¬ψ)
~k = 5

¬θ ∧ ¬ψ
¬θ ∧ ψ

θ ∧ ¬ψ
θ ∧ ψ

k′1 k′2 k′3 k′4 k′5 k′6 k′7

ki ∩ S¬θ, i < 5 removed. . .

¬θ ∧ ¬ψ
¬θ ∧ ψ

θ ∧ ¬ψ
θ ∧ ψ

k′′1 k′′2 k′′3 k′′4 k′′5 k′′6 k′′7

. . . and reinserted at k′′5

¬θ ∧ ¬ψ
¬θ ∧ ψ

θ ∧ ¬ψ
θ ∧ ψ

k′′′1 k′′′2 k′′′3 k′′′4 k′′′5

Initial empty k′′i ’s removed.

Figure 3.3: ~k′′′ = ~k ⊗ψ θ, where a = 5

Figure (3.3) shows a revision of ~k ⊗ψ θ, step by step. The end result is atoms in

k1, . . . , k4 ∩ S¬θ have been compacted down to k′′′3 , i.e. the first k′′′i that contains an

atom ∈ S¬ψ. The first thing to notice is that in the process, information has been

lost—the preferences between the worlds S¬θ∧ψ ∩ k1...4 isn’t present in the new ~k′′′.

Given a series of revisions, using the revision by comparison will tend toward having

no preference at all. Note this implies that we can’t form a reasonable set of beliefs

from “total ignorance” (i.e. k1 = AtL), since the result of any revision by comparison

on such a ~k will be ~k again.

Whilst the above is the intended result, it’s obviously it’s not going to work in all

cases either. We are only getting θ ∈ [~k ⊗ψ θ] in the above case since (θ)
~k < (¬ψ)

~k.

Consider instead figure (3.4).
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¬θ ∧ ¬ψ
¬θ ∧ ψ

θ ∧ ¬ψ
θ ∧ ψ

k1 k2 k3 k4 k5 k6 k7

Contents of k1 removed . . .

¬θ ∧ ¬ψ
¬θ ∧ ψ

θ ∧ ¬ψ
θ ∧ ψ

l1 l2 l3 l4 l5 l6

. . . and replaced in l1

Figure 3.4: ~l = ~k ⊗ψ θ when (¬ψ)
~k ≤ (θ)

~k

In the successful case of figure (3.3), [~k⊗ψθ] = θ∧ψ. In figure (3.4), [~k⊗ψθ] = ¬θ—

not only do we believe the inverse of θ, we also no longer believe ψ holds. Our revision

has failed. We’ve done what the algorithm intends to do, that is change our degree

of firmness in ¬θ to match ¬ψ, however, this was not a strong enough condition to

cause us to believe θ as a result.

Postulate compatibility

Theorem 3.15. Any revision by comparison operator, ⊗ψ, obeys (�0)–(�5) just

when (θ)
~k < (¬ψ)

~k, i.e. ψ restricted to successful cases.

Proof. If (θ)
~k 6< (¬ψ)

~k, figure (3.4) gives us a counter example to (�2), so assume

we have ~k′′′ = ~k ⊗ψ θ such that (θ)
~k < (¬ψ)

~k.

Using the same notation as in Definition (3.14), we have k′′j = kj∩Sθ, ∀j < (¬ψ)
~k.

Hence,

k′′j ⊆ Sθ, ∀j < (¬ψ)
~k

{φ : θ |∼~k φ} = Cn(ki ∩ Sθ) = Cn(k′′i ) where i is minimal st. ki ∩ Sθ 6= ∅

But, by the above, i is also minimal such that k′′i 6= ∅, therefore

Cn(k′′i ) = Cn(k′′′1 ) = [ ~k′′′].
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So ⊗ only obeys AGM postulates so long as we only consider “successful” revi-

sions. This condition is enough to give us some of the Darwiche & Pearl conditions

also.

Lemma 3.16. For a revision by comparison operator ~k′′′ = ~k ⊗ψ θ,

α ∈ Sθ, α ∈ k′′i ⇒ α ∈ ki and α ∈ S¬θ, α ∈ k′′j , α ∈ ki ⇒ j ≥ i

Proof. By examining the algorithm, it is trivial to see that

α ∈ Sθ or (α)
~k ≥ (¬ψ)

~k, α ∈ ki ⇒ α ∈ k′′i

The only case when an atom is moved is when α ∈ S¬θ and (α)
~k < (¬ψ)

~k, in which

case

α ∈ ki ⇒ α ∈ k′′j where j = (¬ψ)
~k, therefore j ≥ i = (α)

~k.

Theorem 3.17. For any AGM revision by comparison operator, i.e. ⊗ψ such that

any revision of ~k ⊗ψ θ, φ is successful,

φ |= θ ⇒ [(~k ⊗ψ θ) ⊗ψ φ] = [~k ⊗ψ φ] — i.e. (C1)

Proof. Let ~k′′′ = ~k ⊗ψ θ, and ~k′, ~k′′ be the intermediary steps in this revision.

[(~k ⊗ψ θ) ⊗ψ φ] = {ϕ : φ |∼ ~k′′′ ϕ} By (3.15)

= Cn(
∨

k′′′i ∩ Sφ) i minimal such that k′′′i ∩ Sφ 6= ∅

Since k′′′i = kb + i − 1′′, for fixed b, the position of any world relative to another

is unchanged, so

= Cn(
∨

k′′i ∩ Sφ) i minimal such that k′′i ∩ Sφ 6= ∅

However since φ |= θ, any α ∈ Sφ, α ∈ Sθ, so k′′i ∩ Sφ = ki ∩ Sφ by (3.16), i.e. the

position of any world in Sφ remains unaltered between k′′i and ki.

= Cn(
∨

ki ∩ Sφ) i minimal such that ki ∩ Sφ 6= ∅

= {ϕ : φ |∼~k ϕ} = [~k ⊗ψ φ]
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Note that throughout the proof, the only time we use the value of φ is so that

revision by φ is successful, i.e. (φ)
~k < (¬ψ)

~k. Because of this, the postulate still

holds if we vary ψ in the revisions used in (C1).

However, unless we impose severe restrictions, (C2) cannot hold—as noted before,

the ordering between ¬θ worlds is lost as part of the revision, a byproduct of this is

in general, (C2) will fail.

Theorem 3.18. For any AGM revision by comparison operator, i.e. ⊗ψ such that a

revision of ~k ⊗ψ φ is successful,

φ ∈ [~k ⊗ψ θ] ⇒ φ ∈ [(~k ⊗ψ φ) ⊗ψ θ] — i.e. (C3)

¬φ 6∈ [~k ⊗ψ θ] ⇒ ¬φ 6∈ [(~k ⊗ψ φ) ⊗ψ θ] — i.e. (C4)

Proof of (C3). Let ~k′′′ = ~k ⊗ψ φ, and ~k′′ and ~k′ be the intermediary steps in this

revision.

φ ∈ [~k ⊗ϕ θ] ⇒ θ |∼~k φ by (3.15)

⇒ ki ∩ Sθ ⊆ Sφ where i min s.t. ki ∩ Sθ 6= ∅

But using (3.16), ki ∩ Sθ = k′′i ∩ Sθ (since they are a subset of Sφ). But is i still

minimal?

Again, using (3.16), any j such that kj ∩ Sθ ⊆ S¬φ, k
′′
l ∩ Sθ = kj ∩ Sθ, l ≥ j. So

since none of these were minimal in ~k, they certainly aren’t in ~k′′. So,

= k′′i ∩ Sθ ⊆ Sφ where i min s.t. k′′i ∩ Sθ 6= ∅

Since k′′′i = k′′b+i−1, for fixed b, the position of any world relative to another is un-

changed, so

= k′′′j ∩ Sθ ⊆ Sφ where j min s.t. k′′′j ∩ Sθ 6= ∅

⇒ θ |∼ ~k′′′ φ⇒ φ ∈ [(~k ⊗ψ φ) ⊗ϕ θ] by (3.15)

Proof of (C4). Identical, but instead of checking that k′′′j ∩ Sθ ⊆ Sφ, check that

∃α ∈ Sφ, α ∈ k′′′j ∩ Sθ
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Again as in the proof of (C1), notice that we don’t require a fixed value for ψ,

but merely that the revision is successful.

Postulate-wise, revision by comparison hasn’t done as well as Spohn conditional-

ization. We only get AGM-compliant revision in the relatively specific “successful”

case, and only (C2) in trivial cases (i.e. when the revision has no effect). Worst of

all, after enough revisions, ~k tends to k1 = AtL.

3.3.2 Comparative Conditionalization

Instead, what happens when we try and use the Spohn conditionalization as a com-

parative operator to get similar effects?

Definition 3.19. Define comparative conditionalization as follows

~k ⊕ψ θ = ~k ⊕λ θ ∨ ¬ψ where λ = (¬ψ)
~k − (θ ∨ ¬ψ)

~k

So, instead of combining ¬θ ∧ ψ-atoms, they are shifted back. Because of this,

~k will no longer tend to k1 = AtL as they did in revision by comparison. As an

example, consider figure (3.5), which performs the same revision as figure(3.3) but

using comparative conditionalization.

¬θ ∧ ¬ψ
¬θ ∧ ψ

θ ∧ ¬ψ
θ ∧ ψ

k1 k2 k3 k4 k5 k6 k7

Note λ = 5 − 3 = 2

¬θ ∧ ¬ψ
¬θ ∧ ψ

θ ∧ ¬ψ
θ ∧ ψ

k′1 k′2 k′3 k′4 k′5 k′6 k′7 k′8 k′9

Figure 3.5: ~k′ = ~k ⊕ψ θ, where a = 5

By (3.8), we have that ⊕λ is an AGM revision operator iff λ > 0. However,

λ ≤ 0 ⇐⇒ (¬ψ)
~k − (θ ∨ ¬ψ)

~k ≤ 0

⇐⇒ (¬ψ)
~k −min{(θ)

~k, (¬ψ)
~k} ≤ 0 ⇐⇒ (¬ψ)

~k ≤ (θ)
~k
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which is the exact condition for a revision by comparison operator to be an AGM

operator, so we have not escaped this requirement for “successful revision” at all.

From (3.10) we have (C2) since, unlike revision by comparison, we are preserving

the ordering between ¬θ ∧ ψ atoms. However, note that revision by comparison pre-

serves ordering between k6 and k7 atoms, whereas in comparative conditionalization,

they are split. Depending on the scenario, preserving these orderings might be a more

desirable property.

3.4 Conclusions

Again, like the postulate sets, none of the iterated revision operators solve all of

our problems, although we can demonstrate each operator’s usefulness in several

cases. Spohn conditionalisation is certainly the most versatile, we have given several

variations showing how it can be applied to different scenarios, however as noted it’s

reliance on arbitary ordinals is at odds with our aim of reproducing intuitive thinking.

One of the main things that is now apparent is that the facts alone are not

necessarily enough. Only σ-liberation requires nothing more than the input sentences

to perform revision, but we deemed it over-simplistic. How much you believe someone

is never purely based on what they tell you, but a collection of information; their

relationship to you, the tone of their voice, even things like appearance—“Don’t

trust him, his eyes are too close together”.



Chapter 4

Conclusions and Future Work

First, we examined belief revision using knowledge bases and the AGM postulate

system, noting it’s relationship with rational consequence. Also we demonstrated the

equivalence between knowledge bases with rational consequence operators and belief

sentences with faithful orderings.

After examining some failures of the AGM system, we gave 3 refinements on the

idea—~k and sequence based epistemic state formulations, which were designed to cope

better with iterated revisions than knowledge bases did. We introduced Lehmann’s

and Darwiche and Pearls’ postulate systems for these epistemic states, examining the

differences between the two. We also gave a non-iterative formulation for an update

operator, that gave better results when considering change in a dynamic world, as

opposed to new information about a static world.

Finally, we used our epistemic-state formulations to present a series of revision

operators capable of iterated revision, evaluating their usefulness in terms of intuitive

properties and postulates. However, several intuitively reasonable cases were noted

that were not possible at the moment.

4.1 Non-näıve Revision

Many avenues of investigation are currently restricted by the fact that regardless of

which postulate set we are using, we are forced to accept the new information as

56
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true. For example, we noted earlier that Spohn’s relative conditionalization seemed

a reasonable idea, but because it’s not guaranteed that θ ∈ [~k 	λ θ], it doesn’t obey

any of the postulate sets. However, example (3.13) gave us an intuitively sensible

situation where such reasoning is applied.

Also, in section 3.1.1, we noted that when we had the situation

σ = p ∧ q · p ∧ r · p ∧ s · p ∧ t · p ∧ u · ¬p · v, ∀v ∈ SL, v 6= p, q, r, s, t, u

in terms of removing the minimal amount of knowledge, it would make more sense

to remove ¬p than every sentence p ∧ δ. However we are prevented from using such

reasoning in general, since

¬p ∈ [p ∧ q · p ∧ r · p ∧ s · p ∧ t · p ∧ u · ¬p] by (I2)

and given a v such that ¬v 6∈ [p ∧ q · p ∧ r · p ∧ s · p ∧ t · p ∧ u · ¬p],

[p ∧ q · p ∧ r · p ∧ s · p ∧ t · p ∧ u · ¬p · v]

= [p ∧ q · p ∧ r · p ∧ s · p ∧ t · p ∧ u · ¬p] + v ⊇ Cn(¬p ∧ v) by (�3), (I2),

So the only case when we could keep the sentences p ∧ δ is when ¬v ∈ [¬p], by

(C2)/(I7’). In the example above, it seemed reasonable with an arbitary independent

v though.

However, we cannot simply remove the requirement that we accept the newest

sentence without repercussions. Just considering knowledge bases, if we removed

(*2) and (*5), “stubborn” operators such as

K ∗ θ =







K + θ if K + θ is satisfiable,

K otherwise.

become possible, where knowledge is only accepted if it doesn’t contradict what we

already know—clearly such revision operators are undesirable.

An alternative approach would be to put a “wrapper around” AGM-compliant

functions, similar to the representation of update operators. For instance,

[σ]Γ
′

= [Ex(σ)]Γ = Cn(Γ(Ex(σ), ∅))
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where Ex() is a function that takes a sequence, returning the sequence with “ex-

ceptional” or “unbelievable” sentences removed. Instead of modifying Darwiche and

Pearl or Lehmann Postulates, a separate set of conditions for such a function could

be investigated.
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